课程培训
机器学习与深度学习算法及应用培训课程,人工智能算法

机器学习与深度学习算法及应用培训课程

 

 

目标收益

通过课程学习,可以理解机器学习的思维方式和关键技术;了解深度学习和机器学习在当前工业界的落地应用;能够根据数据分布选择合适的算法模型并书写代码,初步胜任使用Python进行数据挖掘、机器学习、深度学习等工作。

培训对象

具备一定的Python和深度学习基础,希望深入了解深度学习的目标检测、实体识别、关系抽取、GAN、时间序列分析、强化学习等实用化技术的工程技术人员。

课程大纲

第一节:Python机器学习与TensorFlow

numpy/scipy/matplotlib/panda的介绍和典型使用
scikit-learn的介绍和典型使用
多元线性回归
Logistics回归与Softmax回归
决策树和随机森林
SVM
多种聚类的原理和调参
TensorFlow典型应用
典型图像处理
多项式拟合
快速傅里叶变换FFT
奇异值分解SVD
Soble/Prewitt/Laplacian算子与卷积网络

代码和案例实践:

股票交易数据的 (指数)移动平均线与预测
无人机图像的风机叶片缺陷检测和识别系统
环保检测数据异常检测和分析
股票数据分析
社会学人群收入预测
葡萄酒数据集的决策树/随机森林分类
泰坦尼克乘客存活率估计

第二节:卷积神经网络CNN

神经网络结构,滤波器,卷积
池化,激活函数,反向传播
目标分类与识别、目标检测与追踪
经典AlexNet、VGG、GoogleLeNet
Inception
ResNet、DenseNet
视频关键帧处理
物体检测与定位
RCNN,Fast-RCNN,Faster-RCNN,MaskRCNN
YOLO
FaceNet

代码和案例实践:

搭建自己的卷积神经网络
基于CNN的图像识别
卷积神经网络调参经验分享

代码和案例实践:

迁移学习(Transfer Learning)
人脸检测
OCR字体定位和识别
睿客识云
气象识别

第三节:循环神经网络RNN

RNN基本原理
LSTM、GRU
Attention
编码器与解码器结构
言特征提取:word2vec
Seq2seq模型

代码和案例实践:

看图说话
视频理解
藏头诗生成
问答对话系统
循环神经网络调参经验分享

第四节:生成对抗网络GAN与增强学习RL

生成模型:贝叶斯、HMM到深度生成模型
GAN对抗生成神经网络
DCGAN
Conditional GAN
InfoGan
Wasserstein GAN
马尔科夫决策过程
贝尔曼方程、最优策略
策略迭代、值迭代
Q Learning
SarsaLamda
DQN
A3C

代码和案例实践:

图片生成
看图说话
对抗生成神经网络调参经验分享
飞翔的小鸟游戏
基于增强学习的游戏学习
DQN的实现

 




如果您想学习本课程,请预约报名
如果没找到合适的课程或有特殊培训需求,请订制培训
除培训外,同时提供相关技术咨询与技术支持服务,有需求请发需求表到邮箱soft@info-soft.cn,或致电4007991916
技术服务需求表点击在线申请

服务特点:
海量专家资源,精准匹配相关行业,相关项目专家,针对实际需求,顾问式咨询,互动式授课,案例教学,小班授课,实际项目演示,快捷高效,省时省力省钱。

专家力量:
中国科学院软件研究所,计算研究所高级研究人员
oracle,微软,vmware,MSC,Ansys,candence,Altium,达索等大型公司高级工程师,项目经理,技术支持专家
中科信软培训中心,资深专家或讲师
大多名牌大学,硕士以上学历,相关技术专业,理论素养丰富
多年实际项目经历,大型项目实战案例,热情,乐于技术分享
针对客户实际需求,案例教学,互动式沟通,学有所获
报名表下载
联系我们 更多>>

咨询电话010-62883247

                4007991916

咨询邮箱:soft@info-soft.cn  

 

微信号.jpg

  微信咨询

随时听讲课

聚焦技术实践

订制培训 更多>>